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RADIATION PROCESSES R E L m D  TO OXYGEN-HYDROGEN 

COMBUSTION A2 HIGH PRESSURES 

by Marshall C. Burrows 

Lewis Research Center 

SUMMARY 

Radiation r e l a t e d  to the  combustion of liquid-oxygen jets i n  a gaseous 
hydrogen atmosphere w a s  s tudied by measuring t h e  i n t e n s i t i e s  of t h e  hydroxyl 
r a d i c a l  (OH) ,  oxygen ( O z ) ,  and water (H2O) rad ia t ion  i n  a combustion chamber 
equipped with windows. Overall oxidant-fuel weight r a t i o  w a s  varied from 1 
t o  10 a t  a chamber pressure of 24 atmospheres. M a x i m u m  i n t e n s i t i e s  from t h e  
rad ia t ing  species were obtained near  stoichiometric mixture ratios.  G a s  t e m -  
peratures derived from t h e  measured color  temperature of a tungsten p l a t e  i n  
t h e  gas stream agreed with t h e o r e t i c a l  temperatures of t h e  products. 
a t i o n  appeared to be thermally excited and i n  l o c a l  equilibrium at  all loca- 
t i o n s  within t h e  combustor. 

G a s  radi-  

Radiation measurements made i n  t h e  upstream region of a s t a b l e  combustor 
showed t h a t  i n t e n s i t i e s  varied l i t t l e  with oxidant-fuel weight ra t io .  Measured 
i n t e n s i t i e s  i n i t i a l l y  increased i n  t h e  d i rec t ion  of gas flow because of t h e  
increased extent  of react ion and then decreased when d i lu ted  with excess reac- 
t a n t  or cooled by heat t r a n s f e r  t o  t h e  w a l l s -  Ul t rav io le t  and t o t a l  rad ia t ion  
d a t a  showed t h a t  t h e  react ion proceeded at  approximately a constant rate u n t i l  
t h e  l imi t ing  reactant  w a s  consumed. The dis tance required to complete t h e  re- 
ac t ion  varied from 1.5 to 1 2  inches f o r  a var ia t ion  i n  oxidant-fuel weight 
r a t i o  of 1 to 9. 

During combustion with pressure and veloci ty  o s c i l l a t i o n s  along t h e  axis 
of t h e  combustion chamber, average i n t e n s i t i e s  of t h e  rad ia t ing  gases showed 
t h a t  t h e  axial dis tance required to  r e a c t  t h e  l i q u i d  oxygen (02)  and hydrogen 
(H2) w a s  reduced. 
varied from 1 t o  6 inches f o r  an oxidant-fuel weight-ratio var ia t ion  of 1 t o  9. 

The dis tance required to complete t h e  react ion i n  t h i s  case 

The extent of react ion as determined by rad ia t ion  measurements i n  t h e  two 
combustors w a s  compared to t h e  predicted t rends where turbulent  mixing or 
vaporization w a s  considered to control  t h e  reaction. 

INTRODUCTION 

Various a n a l y t i c a l  models of t h e  combustion processes i n  l iqu ids  and gases 



have considered t h e  r o l e  of vaporization rate (ref, l), turbulent  mixing rate 
(ref. 2 ) ,  and chemical react ion rate (ref, 3) i n  e f f o r t s  to determine t h e  rate- 
control l ing processes of various reactants.  An experimental method of measur- 
ing  these  r a t e s  would be a valuable tool f o r  t h e  analysis  of stable and un- 
stable combustion processes* 

I n  t h i s  paper, t h e  o v e r d l  processes control l ing t h e  combustion of l i q u i d  
oxygen and gaseous hydrogen were related t o  rad ia t ion  from several  molecular 
species along t h e  axis of a high-pressure combustor, Previous work has estab- 
l i s h e d  t h e  thermal or ig in  of t h e  rad ia t ion  (refs.  1 and 5 and unpublished NASA 
data obtained by Marshall Burrows and Ronald Razner) and therefore  m a k e s  it 
possible to r e l a t e  rad ia t ion  i n t e n s i t i e s  to t h e  react ion process, and equi l ib-  
r i u m  products and heat losses  to t h e  combustor w a l l s .  Data are presented f o r  
s t a b l e  combustion a t  constant pressure and unstable combustion with a maximum 
pressure o s c i l l a t i o n  of 30 percent. 
gases are discussed, and extents  of react ion i n  t h e  two combustors as measured 
by rad ia t ion  i n t e n s i t i e s  are compared to t h e  calculated t rends f o r  several  com- 
bustion models. 

Thermal and chemical equilibrium i n  t h e  

PROCEDURE 

A copper combustor w a s  constructed i n  sec t ions  to permit t h e  locat ion of 
a sect ion with windows at various axial distances  from t h e  i n j e c t o r  (fig, 1)- 

Figure 1. - Gaseous-hydrogen - liquid-oxygen combustor. Distance from injector to optical axis variable f rom 
0.8 to 21 inches; chamber diameter, 2 inches; nozzle diameter, 0.60 inch. Injector A, n ine  0.032-inch 
liquid-oxygen jets parallel to low-velocity hydrogen flow. Injector 6, forty-five 0.049-inch high-velocity 
hydrogen jets surrounded by 0.005-inch liquid-oxygen annul i .  
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High-velocity nitrogen p a r a l l e l  to t h e  inner  surfaces  of t h e  windows prevented 
condensation and kept t h e  op t i ca l  path f r e e  of absorbing gases. 
bustion w a s  provided by nine 0.032-inch liquid-oxygen j e t s  in jec ted  ax ia l ly  
with low-velocity hydrogen gas, here inaf te r  re fer red  t o  as combustor A. Con- 
s i s t e n t l y  unstable combustion w a s  provided by 45 high-velocity gaseous-hydrogen 
jets.surrounded by l i q u i d  oxygen i n  0.005-inch annuli ,  here inaf te r  r e fe r r ed  t o  
as combustor B. 
hydrogen flows to obtain oxidant-fuel weight-ratio var ia t ions  (o / f )  from 1 to 
10+.0.1. 
combustor A and from 35 to 60 feet pe r  second i n  combustor B. 
sented f o r  an average chamber pressure of 24 atmospheres. 

S tab le  com- 

Both combustors were operated over a range of oyygen and 

Calculated oxygen ve loc i t i e s  var ied from 60 to 100 feet  per  second i n  
D a t a  are pre- 

Emission spec t ra  from t h e  combustor window were recorded photographically 
i n  t h e  u l t r a v i o l e t  and v i s i b l e  spec t r a l  region on a 1.5-meter gra t ing  spectro- 
graph. With a spec t r a l  s l i t  width of 0.109 angstroms, exposures of 3 seconds 
were su f f i c i en t  to expose type 1-0 Kodak film. Inf ra red  spec t ra  were obtained 
by a monochromator equipped with a calcium f luo r ide  prism and an indium ant i -  
monide detector.  Spec t ra l  s l i t  width w a s  approximately 1000 angstroms. The 
spec t r a l  region from 6,000 to 35,000 angstroms w a s  scanned i n  approximately 
6 seconds, and de tec tor  outputs were recorded as a funct ion of wavelength. 

Ul t rav io le t  rad ia t ion  passed through a 0.050-inch r e s t r i c t i o n  and quartz 
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window to a photometer equipped with an u l t r a v i o l e t  f i l t e r  i n  f r o n t  of a photo- 
mul t ip l ie r  (S-5 response). 
t o  4000 anstroms with a broad m a x i m a  a t  3000 t o  3200 angstroms. 
mul t ip l ie r  was  operated within i ts  l i n e a r  range, and i t s  output was monitored 
by an X-Y p l o t t e r  from which average i n t e n s i t i e s  were measwed during each run. 
Precision of t h e  measurements w a s  approximately ?lo percent. 
cated a t  least once to insure  reproducibi l i ty  of t h e  data 

Spectral  response of t h e  u n i t  extended from 2400 
The photo- 

Runs were dupli- 

Total  rad ia t ion  w a s  t ransmit ted through the  1-inch window porb to a pyram- 
e t e r  with parabolic mirrors t h a t  focused t h e  rad ia t ion  on a thermocouple. 
Spectral  response of t h e  pyrometer was l imi ted  from 2,000 to 35,000 angstroms 
by t h e  quartz combustor windows. 
t h e  pyrometer s u f f i c i e n t  time to respond to the  radiation. Maximum pyrometer 
readings during each run were reproducible within 5 0  percent. 

Run duration w a s  a t  l e a s t  5 seconds to allow 

Output voltages from t h e  pyrometer were d i r e c t l y  proportional to the  t o t a l  
rad ia t ion  in tens i t ies .  
age e varied according t o  t h e  r e l a t i o n  e = a$*33 where a is  a cal ibra-  

Cal ibrat ion with a tungsten lamp showed t h a t  t h e  vol t -  

18 t i o n  constant equal to 4.48X10- 
v o l t s  per % and T i s  t h e  

Oxidant-fuel color temperature i n  %. 

RESULTS 

Spectra 

Spectra of t h e  gases within 
t h e  combustor (fig.  2 )  show t h a t  
predominant rad ia t ion  i n  t h e  ul- 
t r a v i o l e t  and v i s i b l e  s p e c t r a l  re- 
gion i s  due t o  t h e  hydroxyl radi-  
cal  (OH) with t h e  maximum in tens i -  
t i e s  concentrated around 3100 ang- 
stroms. Weak s p e c t r a l  l i n e s  be- 
tween 3200 and 4500 angstroms are 
l a r g e l y  due t o  molecular oxygen 
rad ia t ion  (Schumann-Runge bands). 
"he inf ra red  spectra show t h e  
c h a r a c t e r i s t i c  water-vapor bands 
centered near 14,000, 19,000, and 
27,000 angstroms. The OH radi-  
c a l  a l s o  has emission bands near 
these  wavelengths, but they are 
masked by t h e  stronger water (HzO) 
bands and, therefore,  cannot be 
distinguished. 

1 1  
(a) Combustor A;  stable combustion; window position, 1.7, 3.3, 4.9, 
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(b) Combustor B; unstable combustion; window position, 0.8, 4.0, 

Figure 3. - Relative ultraviolet intensities as function of axial dis- 

12.0, and 21 inches. 

tance from injector. 
Ultraviolet  Radiation 

A photometer w a s  used 

4 
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to measure t h e  u l t r a v i o l e t  rad ia t ion  emitted by t h e  gases i n  t h e  combustor. 
Average u l t r a v i o l e t  rad ia t ion  i n t e n s i t i e s  were measured as a function of 
axial dis tance from the  i n j e c t o r  i n  combustors A and B ( f ig .  3). 
oxidant-fuel weight r a t i o s  were var ied from 1 to 9 i n  combustor A and from 
3 to 10.5 i n  combustor B. 
creased a t  approximately a constant rate with axial distance. Maximum 
u l t r a v i o l e t  rad ia t ion  i n t e n s i t i e s  occurred approximately 1.5 inches from 
t h e  i n j e c t o r  a t  an o/f of 1 and 8 inches downstream at  an o/f of 7. 
D a t a  were not obtained from combustor A at  axial dis tances  g rea t e r  than 
13 inches from t h e  in jec tor .  Radiation t h e r e a f t e r  w a s  extrapolated as a 
s t r a i g h t  dashed l i n e  f o r  each 
t h e  m a x i m a  occurred a t  rates t h a t  var ied from 1.4 t o  2.8 percent per inch of 
combustor length. 

Overall 

Radiation near t h e  i n j e c t o r  i n  combustor A in- 

o/f. Apparent decreases i n  rad ia t ion  after 

Combustor B w a s  operated a t  t h e  same average pressure as combustor A, but 
with a high-frequency pressure o s c i l l a t i o n  with peak-to-peak amplitudes t h a t  
var ied from 5 to 30 percent of t h e  average pressure. I n t e n s i t i e s  measured by 
t h e  photometer showed t h a t  average radiat ion 
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4.0, 5.5, 7.2, 12.0, and 21 inches. 

Figure 4. - Relative total intensit ies as function of axial distance 
from injector. 

increased a t  very high rates neax 
t h e  i n j e c t o r  of combustor B with 
t h e  rate increasing with ove ra l l  
mixture r a t i o  to a maximum at an 
o/f of 9. M a x i m u m  u l t r a v i o l e t  
i n t e n s i t i e s  occurred at approxi- 
mately one-half t h e  dis tance from 
t h e  i n j e c t o r  as compared t o  t h e  
dis tance required during s t a b l e  
combustion (f igs .  3(a) and ( b ) ) .  
The decrease i n  rad ia t ion  inten-  
si t ies f u r t h e r  downstream was 
l a r g e r  during unstable combus- 
t i on ,  t h e  r a t e  varying from 3.5 
to 4.5 percent per  inch of com- 
bus tor  length. 

Total  Radiation 

A t o t a l  rad ia t ion  pyrometer 
w a s  used to measme t h e  t o t a l  
radiance from t h e  gases within 
t h e  chamber. Total r ad ia t ion  in-  
t e n s i t i e s  var ied with axial dis- 
tance from t h e  in j ec to r ,  as shown 
i n  f i g u r e  4, f o r  combustors A 
and B. 

Total  rad ia t ion  near t h e  in- 
j e c t o r  of combustor A increased 
at approximately a constant rate 
with distance, which is s i m i l a r  to 
t h e  behavior of t h e  u l t r a v i o l e t  

5 

' 
I I l l  111111111 1111 1111 I II 11111 I11111I 111 II 1111 I I I I111111111111mIII 1 1 1 1 1 1 1 1 1 1 . 1 ~ 1 1 ~ ~ 1 1 1 1 1  II 1111111111 111 



radiation. M a x i m u m  t o t a l  rad ia t ion  occurred a t  approximately 1.5 inches from 
t h e  i n j e c t o r  f o r  an o/f of 0.8, 6 inches f o r  an o/f of 4.9, and 1 2  inches 
f o r  m o/f of 9. The rad ia t ion  at  dis tances  g rea t e r  than 13 inches appeared 
t o  be constant and w a s  extrapolated as a dashed l ine.  
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Total rad ia t ion  i n t e n s i t i e s  i n  combustor B increased a t  very high rates 
near t h e  injector .  
from t h e  i n j e c t o r  f o r  an o/f of 1 and increased t o  6 inches f o r  an o/f of 
7.5, At downstream dis tances  g rea t e r  than 1 2  inches, measured rad ia t ion  inten-  
si t ies remained nearly constant, 

Maximum t o t a l  rad ia t ion  occurred at approximately 0.8 inch 

Measured intensities of - tance ( re f .  6 and unpublished NASA 
- A  Oxidized tungsten surface in 

- B Gases 12 in. downstream in e t e r  w a s  focused on i t s  surface through 
- C Gases P i n .  downstream in 

data by C. Liebert) w a s  placed i n  t h e  
- combustor gas stream center  of t h e  combustor, and t h e  pyrom- 

t h e  combustor window. Total  rad ia t ion  
from t h e  p l a t e  i s  shown (curve A) i n  

t h e  equation r e l a t i n g  t h e  pyrometer 
voltage t o  t h e  color  temperature of t h e  
tungsten i s  used, t h e  rad ia t ion  data 
show t h a t  t h e  apparent p l a t e  tempera- 
t u r e  increases  from 120Oo+5O0 K a t  an 
o/f of 1 t o  324O0+1OO0 K a t  an o/f 
of 9. These temperatures are somewhat 
lower than t h e  calculated temperatures 
f o r  equilibrium gas mixtures (refs. 7 
t o  9 )  t h a t  varied from 1250' K at  an 

o/f of 8. P l a t e  radiat ion,  corrected 
f o r  p l a t e  emittance, window absorption, 
and hea t - t ransfer  losses ,  would give 
p l a t e  temperatures qu i t e  c lose t o  cal-  
culated temperatures f o r  equilibrium 

combustor A (fig. 4(a)) 

combustor B (fig. 4(b)) 
4 -  f igu re  5 as a function of o/f; When 

- 

2 -  

1 -  
- 
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gas mixtures. The average temperature 
of t h e  gases heating t h e  tungsten 
p l a t e ,  therefore ,  w a s  subs t an t i a l ly  
t h a t  of t he  calculated temperature; 
t h i s  agreement ind ica tes  t h a t  t h e  reac- 
t i o n  w a s  completed 1 2  inches from t h e  
in jec tor .  T h e . t o t a l  gas r ad ia t ion  at  
1 2  inches f r o m  t h e  i n j e c t o r  i s  p lo t t ed  
as curves B and C i n  f igu re  5 f o r  com- 

2 
Oxidant-fuel weiaht rat io 

4 6 ' ' 8 ' ' 10 

!/, 
bustors  A and B, respectively.  Inten-  
s i t i es  are lower than those f o r  the 

Figure 5. - Relative total intensities as funct ion of oxi- 
dant-fuel weight ratio. 



tungsten plate.  

DISCUSSION 

Thermal Equilibrium 

Tie spectrograms of emitted rad ia t ion  from combustors A and B ind ica t e  
t h a t  t h e  pr inc ipa l  u l t r a v i o l e t  emission w a s  from t h e  OB r ad ica l  and t h a t  t h e  
in f r a red  rad ia t ion  w a s  primarily from H20. 
assumed to measure average i n t e n s i t i e s  of t h e  OH r ad ica l  emission centered 
a t  3100 angstroms, and t h e  total rad ia t ion  pyrometer w a s  assumed to measure 
average i n t e n s i t i e s  of t h e  H20 emission centered at  24,000 angstroms. 

The u l t r a v i o l e t  photometer was  

A decrease i n  u l t r a v i o l e t  rad ia t ion  i n t e n s i t i e s  was shown at  l a r g e  a x i a l  
dis tances  from t h e  i n j e c t o r  i n  f igu re  3. Since previous work has shown t h a t  
t h e  OH r a d i c a l  is thermally excited i n  t h e  combustor (ref.  4 and unpublished 
NASA data  obtained by Marshall Burrows and Ronald Razner), t h e  decrease i n  
r ad ia t ion  i n t e n s i t i e s  w a s  assumed t o  be due to t h e  decreasing temperature of 
t h e  gases caused by heat t r a n s f e r  to t h e  chamber w a l l s .  Heat-transfer rates 
to t h e  w a l l s  can be estimated from t h e  calculated temperature decrease and from 
t h e  reduced enthalpy of t h e  gases. The decrease i n  gas temperature correspond- 
ing  to a decrease i n  t h e  rad ia t ion  i n t e n s i t y  w a s  calculated from PlanckXs radi-  
a t ion  law.  A wavelength of 3100 angstroms, i n i t i a l  gas temperature of 3470' K, 
and constant gas emissivi ty  were assumed. 
combustor A of 2.0 percent p e r  inch r e s u l t s  i n  a temperature decrease of 6' K, 
The corresponding decrease i n  t h e  enthalpy of t h e  gases r e s u l t s  i n  a calculated 
hea t - t ransfer  rate of 4 B t u  per  square inch per  second to t h e  w a l l s .  
value is close to t h e  measured r a t e  of 4 t o  5 Btu per  square inch per  second 
i n  a similar combustor ( ref .  10)- 
creased at  approximately twice t h e  rate measured i n  combustor A; t h e  decrease 
ind ica tes  higher heat  t r a n s f e r  to t h e  w a l l s  during unstable combustion. 

An average rad ia t ion  decrease i n  

This 

Ul t rav io le t  rad ia t ion  i n  combustor B de- 

I n  a well-mixed ad iaba t ic  system, thermally exci ted u l t r a v i o l e t  inten-  
s i t ies  would r i s e  to l imi t ing  values for each and t h e r e a f t e r  remain con- 
s t a n t  with increasing a x i a l  distance. If t h e  l imi t ing  value of rad ia t ion  i s  
assumed to be reached when t h e  react ion is  completed, t h e  m a x i m  i n t e n s i t i e s  
i n  t h e  two combustors i nd ica t e  t h e  approximate end of reaction. 
tance required to complete t h e  reac t ion  i n  combustor A (fig.  3, p- 4) varied. 
from 1.5 t o  8 inches f o r  a va r i a t ion  i n  oxidant-fuel weight r a t io . f rom 1 t o  9- 
By contrast ,  t h e  reac t ion  w a s  completed i n  approximately one-half t h i s  d i s tance  
during unstable  combustion i n  combustor B. 

o/f 

The axial dis- 

Inf ra red  rad ia t ion  i s  much less sens i t i ve  to a small temperature change 
i n  the  gases, s o  hea t - t ransfer  e f f e c t s  on these  rad ia t ion  i n t e n s i t i e s  a r e  
s m a l l .  
u l t r a v i o l e t  rad ia t ion  a t  3100 angstroms could be caused by only a 60' K de- 
crease i n  temperature. 
a t ion  a t  24,000 angstrom by only 3.3 percent. This e f f e c t  i s  shown i n  f i g -  
u re  4( b )  (p. 5) --where t h e  t o t a l  r ad ia t ion  i n t e n s i t i e s  at  dis tances  g rea t e r  than 
1 2  inches from t h e  i n j e c t o r  are near ly  constant. The s m a l l  var ia t ions  t h a t  do 

For example, it w a s  previously shown t h a t  a 20-percent decrease i n  

This same temperature decrease would decrease H20 radi- 
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occur a t  low o/f Is a r e  probably due to slower ove ra l l  mixing with l a r g e  quan- 
t i t i e s  of excess hydrogen* For t h e  in f r a red  data, t h e  reac t ion  w a s  again 
assumed to be completed at maximum total i n t e n s i t i e s -  I n  combustor A, t h e  dis-  
tance required f o r  complete react ion varied from 1.5 to 1 2  inches for an 
va r i a t ion  from 1 to 9, I n  combustor By t h i s  d i s tance  w a s  reduced to vary from 
0.8 to 6 inches. The agreement between t h e  in f r a red  and ultraviolet rad ia t ion  
da ta  ind ica tes  probable thermal equilibrium i n  t h e  combustors. 

o/f 

Chemical Equilibrium 

The previously indicated close agreement between t h e  p l a t e  temperatures 
and t h e  equilibrium gas temperatures i n  combustor A ind ica tes  probable chemical 
equilibrium of t h e  products. 
equilibrium of t h e  products can be made, based on chemical equilibrium teapera- 
t u r e s  and concentrations, by comparing t h e  observed r ad ia t ion  to t h e  calculated 
radiation. 

A f u r t h e r  check on both chemical and thermal 

Calculated OH i n t e n s i t i e s  of t h e  ( 0 , O )  band centered near 3100 angstroms 
vary w i t h  temperature according to t h e  r e l a t i o n  (ref- 11) 

band i n t e n s i t y  of OH 

in tegra ted  absorption coef f ic ien t  of 
0.89 cm-l a t m - 1  from reference U 

equilibrium concentration of OH i n  

path length of 5 cm 

OH band, assumed equal to 

atmospheres (refs.  7 to 9 )  

correct ion f o r  temperatures d i f f e r e n t  from To equal to 2877' K 

constants i n  Planck's rad ia t ion  l a w  

e f f ec t ive  wavelength of 3100 angstroms 

equilibrium gas temperature ( re fs .  7 t o  9 )  

Calculated OH concentrations, temperatures, emissivi t ies ,  and inten- 
s i t ies  a r e  tabulated i n  t h e  following table f o r  mixture r a t i o s  between 1 and 
10, an in tegra ted  absorption coef f ic ien t  of t h e  OH band of 0.89 per  cent i -  
meter per  atmosphere, a temperature (To) of 2877' K, and a path length of 
5 centimeters : 
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The 

Oxidant- 
f u e l  weight 

ra t io ,  
o/f 

1 
2 
3 
4 
6 
8 
10 

e calcul  

Equilibrium 

t ra t ion ,  

a t m  

----e ------ 
0.001 

.ll 
* 44 
4.41 -988 
7.80 .9996 
8.94 .9999 

1260 
0,0002 2030 

.022 2630 

.lo4 3030 
1.176 3410 
2 . l l 6  3470 
2.382 3420 

-I--- 

Relative 
blackboa 
radiance, 

=Ah 

----_ 
0.05 

.9 
9.3 
51.1 
64.6 
53.1 

bed i n t e n s i t i e s  vary with o/f as shown i n  curve B i n  f igu re  6. 
If t h e  OH emissivity i s  uni ty  (exponent containing IC.&, is very l a rge )  a t  
a l l  mixture r a t i o s ,  rad ia t ion  i n t e n s i t i e s  vary only with t h e  temperature at  
each o/f as shown by cur+e A i n  f igu re  6. The hydroxyl r ad ica l  i n  thermal 
and chemical equilibrium within the  combustors i s  expected t o  vary with o/f 
i n  a manner similar to t h e  calculated trends. Measured u l t r a v i o l e t  i n t e n s i t i e s  
1 2  inches from t h e  i n j e c t o r  i n  combustors A and B were corrected f o r  t he  heat- 
t r ans fe r  l o s ses  mentioned previously, normalized to t h e  calculated in t ens i ty  
a t  an of 10, and p lo t ted  as curves C and D, respectively,  i n  f igure  6. 
The s lopes of t h e  calculated curves compare favorably with the  curve of com- 
bustor  B. Combustor A rad ia t ion  does not conform to t h e  t rends i n  calculated 
i n t e n s i t i e s ,  espec ia l ly  s ince those i n t e n s i t i e s  were much higher than t h e  in-  
t e n s i t i e s  calculated a t  t h e  lower o/f ra t ios .  Since t h e  average gas tem- 
peratures  i n  t h i s  combustor were close to t h e  calculated equilibrium tempera- 
tu res ,  t h e  observed var ia t ion  must be due t o  in su f f i c i en t  uniformity i n  t h e  
gases. The presence of l o c a l  high temperature zones at  low overa l l  mixture 
r a t i o s  w i l l  increase t h e  average OH i n t e n s i t i e s  to abnormal values. This 
increase can be i l l u s t r a t e d  by averaging t h e  i n t e n s i t i e s  obtained from a sinus- 
o ida l  var ia t ion  i n  o/f. Varying t h e  l o c a l  o/f +20 percent above and below 
a value of 4 (3.2 t o  4.8), increases t h e  average OH in t ens i ty  1.95 times the  
in t ens i ty  f o r  a gas a t  an o/f of 4. 

o/f 

The l a c k  of homogeneous gases i n  t h e  s t a b l e  combustor A appears to be due 
to t h e  l ack  of adequate mixing. 
high ve loc i t i e s  associated with t h e  axial  pressure osc i l la t ion .  

I n  combustor B mixing i s  accomplished by t h e  

In t ens i ty  of water-vapor emission i n  t h e  in f r a red  region depends on t h e  
in tegra ted  i n t e n s i t i e s  of bands at  ll,OOO, 14,000, 19,000, and 27,000 angstroms 
(ref .  11). 
combustors A and B are compared to t h e  rad ia t ion  i n t e n s i t i e s  of the  tungsten 
p la te ,  total emiss iv i t ies  of t h e  gases are considerably below the  p l a t e  emis- 
s i v i t y  (fig.  5). 
products, t h e  apparent emissivity of t h e  gases i n  combustor A var ied from 0.15 
to 0.075. Apparent emiss iv i t ies  of combustor B products var ied from 0.7 t o  

When t h e  t o t a l  rad ia t ion  da ta  at 1 2  inches from t h e  i n j e c t o r  i n  

If t h e  gases a r e  a t  t h e  calculated temperature of equilibrium 

0.25. 

The da ta  t h a t  are ava i lab le  on water-vapor rad ia t ion  (ref. 11) indica te  
t h a t  t h e  gas emissivities i n  t h e  combustors are less than 0.15, Combustor B 
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A CalculaLed ultraviolet intensities at 
3100 A wi th  emissivity o f  1 

B Calculaied ultraviolet intensities at 
3100 A wi th  emissivity related to  
hydroxyl concentration 

C Corrected ultraviolet radiation 12 in. 
downstream in combustor A 

- (fig. 3(a)) 
. D Corrected ultraviolet radiation 12 in. 

2 4 6 8 10 
Oxidant-fuel weight ra t io  

Figure 6. - Relative ultraviolet intensities as funct ion of 
oxidant-fuel weight ratio. 

gases, therefore ,  emit higher than ex- 
pected i n t e n s i t i e s .  Radiation from 
t h e  chamber w a l l  and quartz window may 
have contributed t o  at least p a r t  of 
t h e  high rad ia t ion  observed. An addi- 
t i o n a l  d i f fe rence  between t h e  measured 
p l a t e  r ad ia t ion  and gas rad ia t ion  can 
be due t o  a s l i g h t  change i n  t h e  s o l i d  
angle observed by t h e  pyrometer. 

The temperature e f f e c t  on radia- 
t i o n  i n t e n s i t i e s  i s  much lower i n  t h e  
inf ra red  region, and t h e  H20 concen- 
t r a t i o n  increases  much slower than 
OH concentration with o/f. The 
anomalous behavior of OH rad ia t ion  
i n  combustor A ( f ig .  6 )  does not ap- 
pear i n  t h e  inf ra red  da ta  i n  f i g u r e  5 
(P= 6 ) .  

Extent of Reaction 

The processes t h a t  make up t h e  
mechanisms of oxygen vaporization, 
mixing, react ion,  and establishment 
of equilibrium products can be out- 
l i n e d  on t h e  basis of t h e  preceding 
data. During s t a b l e  combustion, OH 
and H20 i n t e n s i t i e s  near t h e  i n j e c t o r  
are nearly independent of t h e  ove ra l l  
oxidant-fuel weight r a t io .  Tempera- 
t u r e s  near t h e  i n j e c t o r  a r e  a l so  inde- 
pendent of t h e  ove ra l l  mixture r a t i o  
(unpublished NASA data  obtained by 
Marshall Burrows and Ronald Razner). 
It i s  believed, therefore ,  t h a t  t h e  
reac t ion  takes  place i n  mantles around 
t h e  liquid-oxygen jets at temperatures 
t h a t  approach those of a s toichio-  

m e t r i c .  mixture. : Optical depth of t h e  r ad ia t ing  gases increases  d i r e c t l y  with 
increased react ion,  and -henc'e t h e  rad ia t ion  i n t e n s i t y  increases  i n  d i r e c t  pro- 
port ion t o  t h e  extent of ' react ion.  After t h e  . reac t ion : i s  complete ( a l l  of t h e  
02 or H2 reacted) ,  the-.excess reac tan t  continues t o  mix with t h e  products t o  
f okm a homogeneous mixture. t h a t  approaches t h e  calculated equilibrium composi- 
t i on ,  temperature,..,and rad ia t ion  in tens i ty .  During unstable combustion, t h e  
preceding processes occur i n  t h e  same order but  within a much shor te r  d i s tance  
i n  t h e  combustor...' '- 

Turbulent mixing (refs. 2, 12, and unpublished NASA data obtained from 

10 



Zone 1, stoichiometric reaction 
Zone 2, mixing wi th  excess hydrogen 
Zone 3 ,  equi l ibr ium products 

2.4 olf 

- --- ----- 
Oxidant-fuel 
weight ratio, 

L a c 
(a) Turbulent  mixing model applied to combustor A. 

c Oxidant-fuel 
weight ratio, 

olf  

(b) Vaporization model applied to combustor A. 

8 ----------___ 

Axial distance, in. 

(c) Turbulent mixing model applied to combustor B. (d) Vaporization model applied to combustor B. 

Figure 7. - Relative water intensit ies at 24,000 angstroms as funct ion of axial distance from injector. 

Martin Hersch) and vaporization (ref. 1) of the reac tan ts  have both'been con- 
sidered to have considerable influence on t h e  extent  of react ion i n  a com- 
bustor. 
i n t o  the  o ther  i s  l imi ted  by t h e  l o c a l  turbulence i n t e n s i t y  and t h e  dis tance 
between the in j ec t ion  elements, 
vaporization (oxygen i n  t h e  present case) to control  t h e  extent of reaction. 

The turbulen t  mixing model assumes t h a t  t he  d i f fus ion  of one reac tan t  

The vaporization model considers reac tan t  

The two models were used to predic t  t h e  behavior of H20 r ad ia t ion  at 
24,000 angstroms i n  combustors A and B as 'a funct ion of a x i a l  dis tance as 
shown i n  f igu re  7. 
by turbulen t  mixing are given i n  references 2, 12,  and unpublished NASA data 
obtained from Martin Hersch; vaporization ca lcu la t ions  are given i n  refer- 
ence 1. The combustor w a s  a r b i t r a r i l y  divided i n t o  t h e  following t h r e e  zones: 
(1) stoichiometr ic  react ion,  ( 2 )  mixing with excess hydrogen, and (3) uniform 
products. *Radiation i n t e n s i t i e s  i n  zone (1) varied w i t h  the concentration of 
H20 i n  proportion to t he  extent  of reaction. This zone w a s  cont ro l led  by tur- 
bulent  mixing o r  vaporization and is shown as EL s o l i d  l ine.  
zone (3) w a s  proport ional  t o  t h e  H20 concentration at the temperature of equi- 
librium products (refs, 7 to 9), w h i l e  t h e  mixing behavior of zone (2)  radia- 
t i o n  was assumed. 
are shown as dot ted  and dashed l i n e s ,  respectively. 

The techniques used to ca lcu la t e  the extent  of reac t ion  

Radiation i n  

The latter zones are not  important to this discussion and 
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Combustor parameters t h a t  influenced the turbulen t  mixing model were pr i -  
marily t h e  i n j e c t o r  element spacing and t h e  l o c a l  turbulence intensi ty .  These 
parameters differed by a t  least 20 times between combustors A and B and caused 
t h e  reac t ion  by turbulent  mixing t o  be  completed i n  less than 1 inch i n  com- 
bustor  B (fig.  7 ( c ) ) ,  

The vaporization of l i q u i d  oxygen was control led l a rge ly  by t h e  median 
Hence, t h e  react ion drop s i z e  of oxygen produced by the i n j e c t o r  ( r e f -  1). 

a t  a mixture r a t i o  of 8 w a s  completed i n  22 inches i n  combustor A ( f ig ,  7 (b) )  
and i n  6 inches i n  combustor B (fig.  7(d)). 

When t h e  t rends indicated by t h e  calculated rad ia t ion  i n  f igu re  7 a r e  com- 
pared to t h e  total measured i n t e n s i t i e s  i n  f igu re  4 (p. 5 ) ,  it appears t h a t  
t h e  extent of reac t ion  i s  control led by turbulen t  mixing i n  combustor A, and 
t h e  react ion i n  combustor B is l imi ted  by vaporization, While refinements a r e  
des i rab le  i n  t h e  assumptions made i n  these  calculat ions,  t h e  indicated t rends 
show t h e  merit  of comparing rad ia t ion  measurements with these  or s i m i l a r  ana- 
l y t i c a l  models f o r  determining t h e  extent of reac t ion  f o r  various reac tan ts  
and combustor configurations. 

SUMMARY OF TIES" 

From t h i s  inves t iga t ion  of rad ia t ion  processes r e l a t ed  to oxygen-hydrogen 
combustion a t  high temperatures t h e  following results were obtained: 

(1) Hydroxyl (OH) and water (H20)  molecules appear to be i n  l o c a l  thermal 
and chemical equilibrium a t  a l l  loca t ions  with t h e  chamber of a l i q u i d  oxygen- 
gaseous hydrogen combustor. 

(2) Th? required dis tance to r eac t  l i q u i d  oxygen with hydrogen w a s  deduced 
from radia t ion  da ta  f o r  a stable and unstable  combustor. The react ion w a s  com- 
p le ted  i n  less than ha l f  t h e  dis tance f o r  unstable combustion. 

(3) Ul t rav io le t  i n t e n s i t i e s  a r e  ser ious ly  a f fec ted  by t h e  cooling of com- 
bus tor  gases through hea t  transfer to t h e  w a l l s  and by t h e  l a c k  of uniformity 
i n  the  gases. Errors i n  i n f r a red  i n t e n s i t i e s  are possible  because of t h e  radi-  
a t ion  emitted by t h e  hot surfaces  i n  t h e  combustor. 

(4) Rate processes r e l a t ed  to t h e  combustion of l i q u i d  oxygen and hydro- 
gen, based on a constant temperature react ion with subsequent mixing of t h e  
products, are in fe r r ed  from t h e  data, Measured i n t e n s i t i e s  were compared to 
c d c u l a t e d  rad ia t ion  t h a t  w a s  asSumed to be controlled by turbulent  mixing or 
vaporization. The reac t ion  i n  t h e  s t a b l e  combustor appeared to be control led 
by turbulent  mixing. 
unstable combustor. 

Vaporization apparently l imi ted  t h e  react ion i n  t h e  
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